Bezier surface - definition. What is Bezier surface
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

SPECIES OF MATHEMATICAL SPLINE USED IN COMPUTER GRAPHICS, COMPUTER-AIDED DESIGN, AND FINITE ELEMENT MODELING, IS DEFINED BY A SET OF CONTROL POINTS
Bicubic patch; Bezier surface; Bezier surfaces; Bezier patch; Bézier patch

Bézier surface         
Bézier surfaces are a species of mathematical spline used in computer graphics, computer-aided design, and finite element modeling.
Bezier surface         
<graphics> A surface defined by mathematical formulae, used in computer graphics. A surface P(u, v), where u and v vary orthogonally from 0 to 1 from one edge of the surface to the other, is defined by a set of (n+1)*(m+1) "control points" (X(i, j), Y(i, j), Z(i, j)) for i = 0 to n, j = 0 to m. P(u, v) = Sum i=0..n {Sum j=0..m [ (X(i, j), Y(i, j), Z(i, j)) * B(i, n, u) * B(j, m, v)]} B(i, n, u) = C(n, i) * u^i * (1-u)^(n-i) C(n, i) = n!/i!/(n-i)! Bezier surfaces are an extension of the idea of {Bezier curves}, and share many of their properties. (1996-06-12)
Biharmonic Bézier surface         
Biharmonic Bezier surface
A biharmonic Bézier surface is a smooth polynomial surface which conforms to the biharmonic equation and has the same formulations as a Bézier surface. This formulation for Bézier surfaces was developed by Juan Monterde and Hassan Ugail.

ويكيبيديا

Bézier surface

Bézier surfaces are a species of mathematical spline used in computer graphics, computer-aided design, and finite element modeling. As with Bézier curves, a Bézier surface is defined by a set of control points. Similar to interpolation in many respects, a key difference is that the surface does not, in general, pass through the central control points; rather, it is "stretched" toward them as though each were an attractive force. They are visually intuitive, and for many applications, mathematically convenient.